On T2* magnetic resonance and cardiac iron.

نویسندگان

  • John-Paul Carpenter
  • Taigang He
  • Paul Kirk
  • Michael Roughton
  • Lisa J Anderson
  • Sofia V de Noronha
  • Mary N Sheppard
  • John B Porter
  • J Malcolm Walker
  • John C Wood
  • Renzo Galanello
  • Gianluca Forni
  • Gualtiero Catani
  • Gildo Matta
  • Suthat Fucharoen
  • Adam Fleming
  • Michael J House
  • Greg Black
  • David N Firmin
  • Timothy G St Pierre
  • Dudley J Pennell
چکیده

BACKGROUND Measurement of myocardial iron is key to the clinical management of patients at risk of siderotic cardiomyopathy. The cardiovascular magnetic resonance relaxation parameter R2* (assessed clinically via its reciprocal, T2*) measured in the ventricular septum is used to assess cardiac iron, but iron calibration and distribution data in humans are limited. METHODS AND RESULTS Twelve human hearts were studied from transfusion-dependent patients after either death (heart failure, n=7; stroke, n=1) or transplantation for end-stage heart failure (n=4). After cardiovascular magnetic resonance R2* measurement, tissue iron concentration was measured in multiple samples of each heart with inductively coupled plasma atomic emission spectroscopy. Iron distribution throughout the heart showed no systematic variation between segments, but epicardial iron concentration was higher than in the endocardium. The mean ± SD global myocardial iron causing severe heart failure in 10 patients was 5.98 ± 2.42 mg/g dry weight (range, 3.19 to 9.50 mg/g), but in 1 outlier case of heart failure was 25.9 mg/g dry weight. Myocardial ln[R2*] was strongly linearly correlated with ln[Fe] (R²=0.910, P<0.001), leading to [Fe]=45.0×(T2*)⁻¹·²² for the clinical calibration equation with [Fe] in milligrams per gram dry weight and T2* in milliseconds. Midventricular septal iron concentration and R2* were both highly representative of mean global myocardial iron. CONCLUSIONS These data detail the iron distribution throughout the heart in iron overload and provide calibration in humans for cardiovascular magnetic resonance R2* against myocardial iron concentration. The iron values are of considerable interest in terms of the level of cardiac iron associated with iron-related death and indicate that the heart is more sensitive to iron loading than the liver. The results also validate the current clinical practice of monitoring cardiac iron in vivo by cardiovascular magnetic resonance of the midseptum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac and Hepatic T2*-Weighted Magnetic Resonance Imaging

Abstract Background Iron overload is the main transfusion related side effects in patients with transfusion dependent hemoglobinopathies. Severe iron deposition in tissues leads to organ dysfunction. Many organs can be affected such as heart, liver, and endocrine organs. Cardiac failure and liver fibrosis are the consequent of Iron overload in transfusion dependent hemoglobinopathy. Magne...

متن کامل

Evaluation of tissue doppler echocardiography and T2* magnetic resonance imaging in iron load of patients with thalassemia major

Background: Iron-mediated cardiomyopathy is the main complication of thalassemia major (TM) patients. Therefore, there is an important clinical need in the early diagnosis and risk stratification of patients. The aim of this study was to evaluate the efficacy of tissue doppler imaging (TDI) to study cardiac iron overload in patients with TM using T2* magnetic resonance (MR) as the gold-standard...

متن کامل

Assessment of Organ Specific Iron Overload in Transfusion-dependent Thalassemia by Magnetic Resonance Imaging Techniques

The consequence of repeated blood transfusions in thalassemia is iron overload in different organs. Magnetic resonance imaging (MRI) is a reliable, non-invasive and accurate method for iron detection in various tissues, hence the introduction of MRI has revolutionized the management of these patients and improved the life expectancy of them. Cardiac MRI T2* has a profound effect not only on est...

متن کامل

A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...

متن کامل

Association between serum ferritin level, cardiac and hepatic T2-star MRI in patients with major β-thalassemia

Background Frequent blood transfusion is often associated with iron overload. Proper use of iron chelators to treat iron overload requires an accurate measurement of iron levels. Magnetic resonance T2-star (T2* MRI) can measure iron level in the heart and liver. Our goal was to see whether an association exists between serum ferritin level and T2* MRI in patients with major beta thalassemia. ...

متن کامل

Correlation between QRS Complex Changes and Cardiac Iron Overload in Beta Thalassemia Major Patients Using T2*MRI

Background and purpose: Cardiac magnetic resonance imaging (MRI) is a costly method to assess cardiac iron overload. The presence of fragmented QRS (fQRS) indicates changes due to iron overload in cardiac tissue. The aim of this study was to evaluate the correlation between fQRS and cardiac iron overload using cardiac MRI in patients with β-thalassemia major (β-TM). Materials and methods: This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 123 14  شماره 

صفحات  -

تاریخ انتشار 2011